Metric Embeddings of Laakso Graphs Into Banach Spaces

Stephen J. Dilworth, Denka Kutzarova, Svetozar Stankov,

Let X be a Banach space which is not super-reflexive, i.e., which does not admit an equivalent uniformly convex norm. Then, for each $n \geq 1$ and $\varepsilon > 0$, we exhibit metric embeddings of the Laakso graph \mathcal{L}_n into Xwith distortion less than $2 + \varepsilon$ and into $L_1[0,1]$ with distortion 4/3. These results improve previous estimates although we do not know whether they are optimal. However, we show that the distortion of an embedding of \mathcal{L}_2 (respectively, the diamond graph D_2) into $L_1[0,1]$ is at least 9/8 (respectively, 5/4).

^{*}University of South Carolina, dilworth@math.sc.edu

[†]Bulgarian Academy of Sciences and University of Illinois, denka@illinois.edu

[‡]erejnion@gmail.com